




 
 

Technical Overview of PerceptiLabs 
 
Abstract 
PerceptiLabs enables machine learning practitioners to work more 
efficiently with machine learning models and to gain more insight into 
their models. PerceptiLabs’ visual approach lowers the barrier of entry 
for beginners while providing researchers and advanced users with 
code-level access to their models. 
 

 



 

Technology  
PerceptiLabs is a dataflow driven, visual API for TensorFlow, 
distributed as a free Python package (hosted on PyPI) for everyone to 
use. PerceptiLabs wraps low-level TensorFlow code to create visual 
components, which allows users to visualize the model architecture as 
the model is being built. 
 
As a visual API, PerceptiLabs sits on top of the various TensorFlow 
API layers including tf.Keras: 
 

 
 
How it works 
The settings/hyperparameters of each component (layer) can be set 
and tuned with the visual interface. Since these high-level settings 
generate low-level code, we can provide lots of support to the user, 



which is the key behind the benefits PerceptiLabs provides. This 
allows us to auto-generate granular visualizations for each component 
and to suggest settings (auto-configs) for the user in each component. 
PerceptiLabs gives the user warnings, errors, and tips during the 
modeling process to guide them towards building better models. 
When training starts, PerceptiLabs auto-generates visualizations for 
every single underlying variable in the model, which can then be seen 
and analyzed in a statistics view. When the training is complete, the 
user can automatically test and validate the model, before exporting 
the model (i.e., push to production or share on GitHub). 
 
Design Principles 
Each component acts as a template for generating low-level 
TensorFlow code based on the settings, the user can work in a code 
view as well. We have made this easy by allowing the user to toggle 
between the visual interface and the code. By keeping this level of 
transparency and flexibility, we hope to bridge the gap between 
beginners and researchers, where we have designed the UX in a 
similar way to Keras. Instead of using a high-level code API as Keras, 
PerceptiLabs is a visual API where each component can be configured 
at both a high level (i.e., via the UI) and at a low level (e.g., via code) 
right away. 
 
PerceptiLabs is designed so that the user drags and drops 
components onto a workspace for each layer they want to include in 
their model. To complete and run the model, a Training component is 
connected at the end of the model’s graph. It’s designed in a similar 
way to Keras, where the user writes one-liners of code for each layer 
they want their model to include, and to wrap up and train the model, 
a .compile() and a .fit() method are invoked. However, the Training 



component in PerceptiLabs comes with the benefit of making it easier 
to build complex models and to use different machine learning 
techniques in an easy way. Due to the Training component’s unique 
design, PerceptiLabs supports any sort of novel model types and 
techniques. For example, if the user wants to use reinforcement 
learning or object detection, they will connect the respective 
components at the end of the model.  
 
The Python code being generated in each component is fetched from 
Jinja files, where our goal is to have the community contributing to 
these templates through our GitHub repository. 
 
Comparison to TensorFlow and Keras 
While PerceptiLabs is built on TensorFlow and other APIs, 
PerceptiLabs' visual API provides immediate benefits over pure code: 
 

 
 
While users can work directly with the raw code for each component 
in their model, most users will enjoy the ability to configure each 



component via the user interface and will see an immediate preview of 
what the component outputs.  
 

Key Benefits 
There are several benefits of taking a visual approach as it enables us 
to: 

● Show the model architecture with output visualizations for each 
component 

● Show granular visualizations during the modeling phase, 
run-time, and testing 

● Show warnings and recommendations for debugging and model 
building 

● Automatically suggest configs/settings and hyperparameters 
 
On top of that, PerceptiLabs also provides: 

● Model templates for common machine learning problems 
● Dimensions and I/O shape fitting 
● A model registry to easily keep track of models and experiments 
● Data and model version control in order to reproduce 

experiments and go back in time 
● Distributed training over all available GPUs 
● Different tests to try out the model before pushing it to 

production 
 

Integration/Workflow/Architecture 
The process for building machine learning models involves numerous 
steps. 
 



A machine learning workflow usually begins with a “Data 
Management” phase, where training data is acquired, organized into a 
useful form, and may be labeled (e.g., for supervised learning) so that it 
can be classified by an ML system. Following this, a “Model 
Management” phase takes place, where an ML model is built, 
evaluated and tuned for behaviour and performance, and a version of 
the trained model is stored and made ready for deployment. Finally, 
“Serving Management” involves the deployment of that trained model 
into the real world, where it’s made available for inference, continually 
monitored, and its results are communicated to the business owner 
and back to the ML team. 

 



PerceptiLabs helps with the "Model management" phase while 
providing the flexibility for users to choose Data management and 
Serving management solutions that work best for them.  
 
In our free version, users host their data and model on their local 
machine, and then share them via GitHub. Models exported by the free 
version of PerceptiLabs can then be hosted either locally or on a 
server. 
 
For enterprise, users can choose between our Docker version or our 
Red Hat OpenShift version. The Docker version can distribute 
processing across multiple GPUs on a single machine, while the Red 
Hat OpenShift version can distribute processing on multiple GPUs 
across several machines, and offers an integrated, high-performance 
platform on which to piece together components for designing and 
hosting models.  
 
PerceptiLabs' visual interface helps a wide range of users from 
developers to project managers, collaborate during the “Design and 
Build” phase, while its rich statistical view helps users “Train & Tune” 
their model. PerceptiLabs also offers features for "Version Control" 
such as the ability to view the history of a model. 
 
 
  


	Blank Page

